The Welfare Effects of WIC Purchasing in the Infant Formula Market

Xi Wang

University of Georgia

Motivation

Policymakers sign exclusive contracts to control costs in supplying private goods.

Examples:

* Medicare program in the medical devices markets.
* Nine cities in China implement competitive bidding contracts in the pharmaceutical industry.
\rightarrow This paper: The Women, Infants, and Children Nutritional Assistance (WIC) program in the infant formula market.

Questions:

\# 1. (Policy evaluation) How does the given exclusive contract scheme impact the total welfare?
\# 2. (Policy design) What is the optimal policy to subsidize low-income families and meanwhile reduce government expenditures in supplying goods?

Setting

This paper studies the welfare implications of WIC purchasing in infant formula markets.

WIC:

* Serves poor moms and young kids by providing them free food.
* 1.7 million infant participants; 45% of all eligible infants in the U.S.

Infant Formula Market:

* Demand: The WIC program is the major buyer of infant formula.
- Infant formula products are more expensive than other products supplied by WIC.
- Controls costs (The WIC program spent $\$ 927$ million on infant formula alone.) \rightarrow

Exclusive contracts \rightarrow Grant market power to contract manufacturer \rightarrow Price $\uparrow \rightarrow \ominus$ Consumers \& government

* Supply: The market is highly concentrated and is dominated by Abbott, Nestle, and Mead Johnson.

Trade-off \& Intuition

This paper studies the welfare implications of WIC purchasing in infant formula markets.

WIC households: Distorted Choices towards Contract Manufacturers shares

* Trade-off: Use vouchers to get the contract manufacturer's products for free, but have to pay full price for other brands.
- Smith et al. (2023); Smith et al. (2022); Griffith et al. (2018);

Non-WIC households: Demand Spillover Occurs (spillover

* Mechanisms: WIC label signaling; hospital stocking; shelf spaces in retail stores.
- Wang \& Filipski (working paper, 2023); Abito et al. (2022); Huang \& Perloff (2014); Oliveira et al. (2011).

Manufacturers: Distorted Pricing Strategies policy price (detail

* After knowing auction outcomes:
- Without price restrictions, the contract manufacturers' infant formula products should be expensive.
- WIC sets price restrictions on contract manufacturers. Davis et al. (working paper, 2023)

This Paper

* Quantifies the welfare trade-off from WIC purchasing.
* Question 1: How does the given exclusive contract scheme impact the total welfare?
- Method: I estimate a structural model and compute a Laissez-faire scenario without any government intervention.
- Policy Experiment I:Laissez-faire

This Paper

* Quantifies the welfare trade-off from WIC purchasing.
* Question 1: How does the given exclusive contract scheme impact the total welfare?
- Method: I estimate a structural model and compute a Laissez-faire scenario without any government intervention.
- Policy Experiment I:Laissez-faire
- Finding \#1: The current WIC program leads to a $0.4 \% \downarrow$ price decrease, resulting in a $0.03 \% \uparrow$ increase in total welfare.
\rightarrow What do we learn: Removing the WIC program leads to price increases due to the significant role played by price regulation.

This Paper

* Quantifies the welfare trade-off from WIC purchasing.
* Question 1: How does the given exclusive contract scheme impact the total welfare?
- Method: I estimate a structural model and compute a Laissez-faire scenario without any government intervention.
- Policy Experiment I:Laissez-faire
- Finding \#1: The current WIC program leads to a $0.4 \% \downarrow$ price decrease, resulting in a $0.03 \% \uparrow$ increase in total welfare.
\rightarrow What do we learn: Removing the WIC program leads to price increases due to the significant role played by price regulation.
- Finding \#2: Every additional dollar spent by the government, WIC participants receive only 69 cents.

This Paper

* Question 2: Are there alternative policies to subsidize low-income families and reduce government expenditures in supplying formula?
- Method: Compare welfare in the current world with the counterfactual simulation.
- Policy Experiment II: Discount Coupon
\rightarrow Description: Eliminate exclusive contracts and price regulations, and instead, provide WIC participants with discount coupons on any brands.

This Paper

* Question 2: Are there alternative policies to subsidize low-income families and reduce government expenditures in supplying formula?
- Method: Compare welfare in the current world with the counterfactual simulation.
- Policy Experiment II: Discount Coupon
\rightarrow Description: Eliminate exclusive contracts and price regulations, and instead, provide WIC participants with discount coupons on any brands.
- Finding \#1: The aggregate consumer surplus in the counterfactual could never as high as it under the current WIC program.

This Paper

* Question 2: Are there alternative policies to subsidize low-income families and reduce government expenditures in supplying formula?
- Method: Compare welfare in the current world with the counterfactual simulation.
- Policy Experiment II: Discount Coupon
\rightarrow Description: Eliminate exclusive contracts and price regulations, and instead, provide WIC participants with discount coupons on any brands.
- Finding \#1: The aggregate consumer surplus in the counterfactual could never as high as it under the current WIC program.
\rightarrow Mechanism (i) If the discount is too low, then WIC participants have to pay more out-of-pocket, which reduce their surplus;
\rightarrow Mechanism (ii) If the discount is too high, then manufacturers have incentive to raise prices, which could harm non-WIC households.

This Paper

* Question 2: Are there alternative policies to subsidize low-income families and reduce government expenditures in supplying formula?
- Method: Compare welfare in the current world with the counterfactual simulation.
- Policy Experiment II: Discount Coupon
\rightarrow Description: Eliminate exclusive contracts and price regulations, and instead, provide WIC participants with discount coupons on any brands.
- Finding \#2: Policymaker can achieve government-spending-neutrality by offering each participant a 64% discount.

This Paper

* Question 2: Are there alternative policies to subsidize low-income families and reduce government expenditures in supplying formula?
- Method: Compare welfare in the current world with the counterfactual simulation.
- Policy Experiment II: Discount Coupon
\rightarrow Description: Eliminate exclusive contracts and price regulations, and instead, provide WIC participants with discount coupons on any brands.
- Finding \#2: Policymaker can achieve government-spending-neutrality by offering each participant a 64% discount.
- Finding \#3: To make the sum of WIC households' consumer surplus and government expenditures to be the same as in the status quo: Give each WIC participant 42\% discount.

Contribution

WIC Competitive Bidding Contracts:

- Davis et al.(working paper, 2023); Abito et al. (2022);Huang \& Perloff (2014); Davis (2012); Oliveira et al. (2011).
\rightarrow Assesses how the WIC competitive bidding scheme with price restrictions affects overall welfare

WIC Program:

- Bronchetti et al. (2019); Finkelstein \& Notowidigdo (2019); Gray (2019); Hanks et al. (2019), and so on.
\rightarrow Explores the program's interaction with market power in a highly concentrated market.

Exclusive Dealing:

- Jullien \& Sand-Zantman (2022); Lee (2013); Cachon \& KoK (2010); Armstrong \& Wright (2007); Hagiu (2006); Bernheim \& Whinston (1998).
\rightarrow Offers an application that demonstrates the outcomes of exclusive dealings.

Institutional Background

Auction and price regulation

MEAD JOHNSON

Mead Johnson is chosen as a WIC contract manufacturer
\$5

Nestle

Minimum inventory

WIC participants use vouchers and pay $\$ 0$

WIC program reimburses retailers

Contract winner pays rebates

Summary

1. The Manufacturer who offers the highest rebate per product is chosen as a WIC Sponsor
2. The WIC Sponser has a higher saturation of their product in Retail Stores

3.

WIC regulates the pricing of the WIC Sponsor's product

4. WIC Households use WIC Vouchers to get the WIC Sponsered product

Model

Setup

Demand: Mixed Logit Model

* WIC participants and non-WIC participants.
\# 1. WIC households obtain the contract manufacturer's infant formula without charge.
\# 2. Different households have varying preferences for the contract manufacturer's products.

Supply: Bertrand-Nash with price regulation on the contract winner.

* A contract manufacturer and non-contract manufacturers.
\# 1. The contract manufacturer faces price restrictions.
\# 2. Non-contract manufacturers choose prices in a Bertrand Nash equilibrium.

Demand

Utility:

* Household i's utility from purchasing product j in the market m is given below:

$$
u_{i j m}=\alpha \cdot P_{i j m}+\beta_{i} \cdot \mathbb{1}_{j=g, m}+\eta_{c}+\eta_{y q}+\eta_{j}+\underbrace{\xi_{j m}}_{\text {unobserved }}+\underbrace{\epsilon_{i j m}}_{\sim T 1 E V}
$$

* Market (m): state-county-year-quarter level.
* Product (j): Abbott, Nestle, Mead Johnson, Others, or Breastfed.
* Normalize breastfeeding as an outside option.

$$
u_{i 0 m}=\epsilon_{i 0 m}
$$

Demand

Utility:

* Household i's utility from purchasing product j in the market m is given below:

$$
u_{i j m}=\alpha \cdot P_{i j m}+\beta_{i} \cdot \mathbb{1}_{j=g, m}+\eta_{c}+\eta_{y q}+\eta_{j}+\underbrace{\xi_{j m}}_{\text {unobserved }}+\underbrace{\epsilon_{i j m}}_{\sim T 1 E V}
$$

* Market (m): state-county-year-quarter level.
* Product (j): Abbott, Nestle, Mead Johnson, Others, or Breastfed.
* Normalize breastfeeding as an outside option.

$$
u_{i 0 m}=\epsilon_{i 0 m}
$$

Demand

Utility:

* Household i's utility from purchasing product j in the market m is given below:

$$
u_{i j m}=\alpha \cdot P_{i j m}+\beta_{i} \cdot \mathbb{1}_{j=g, m}+\eta_{c}+\eta_{y q}+\eta_{j}+\xi_{j m}+\epsilon_{i j m}
$$

* WIC participants obtain contract manufacturers' products for free.

$$
P_{i j m}= \begin{cases}0, & \text { if } \mathrm{i} \in \text { WIC households and if } \mathrm{j}=\text { contract manufacturer } \\ P_{j m}, & \text { otherwise }\end{cases}
$$

* WIC participants can purchase non-contract infant formula products out-of-pocket.

Demand

* Household i's utility from purchasing product j in the market m is given below:

$$
u_{i j m}=\alpha P_{i j m}+\beta_{i} \cdot \mathbb{1}_{j=g, m}+\eta_{c}+\eta_{y q}+\eta_{j}+\xi_{j m}+\epsilon_{i j m}
$$

* WIC and non-WIC households have heterogeneous preferences on the contract manufacturer.

$$
\beta_{i}= \begin{cases}\beta_{n}, & \text { if } \mathrm{i} \in \text { non-WIC households } \\ \beta_{w}, & \text { if } \mathrm{i} \in \text { WIC participants }\end{cases}
$$

* β_{n} can be interpreted as demand spillover effects on non-WIC households.
- Mechanisms: WIC label signaling; physicians' recommendations; shelf spaces in retailers.
* β_{w} reflects WIC households preferences on the contract manufacturer's products.

Supply

Non-contract Manufacturer:

$$
\pi_{j m}^{\text {non-winner }}\left(P_{j m}\right)=\left(P_{j m}-M C_{j m}\right) \times Q_{j m}\left(P_{j m}\right)
$$

* $Q_{j m}=\underbrace{s_{j m}^{\text {nic }} \times \text { WIC }_{m} \times \text { Market }^{\text {Size }}{ }_{m}}_{Q_{j m}^{\text {nic }}}+\underbrace{s_{j m}^{\text {non }- \text { wic }} \times\left(1-\text { WIC }_{m}\right) \times \text { Market Size }_{m}}_{Q_{j m}^{\text {non }}-\text { wic }}$
* $W I C_{m}$: The ratio of WIC households in the market m .

Supply

Non-contract Manufacturer:

$$
\pi_{j m}^{\text {non-winner }}\left(P_{j m}\right)=\left(P_{j m}-M C_{j m}\right) \times Q_{j m}\left(P_{j m}\right)
$$

* $Q_{j m}=\underbrace{s_{j m}^{\text {wic }} \times \text { WIC }_{m} \times \text { Market }^{\text {Size }}{ }_{m}}_{Q_{j m}^{\text {nic }}}+\underbrace{s_{j m}^{\text {non-wic }} \times\left(1-\text { WIC }_{m}\right) \times \text { Market Size }_{m}}_{Q_{j m}^{\text {non }} \text {-wic }}$
* WIC $_{m}$: The ratio of WIC households in the market m .

Contract Manufacturer:

* Rebate is determined through the competitive bidding process.

Data

Data

1. Nielsen Retail Scan Data:
\rightarrow Market data about infant formula market and milk market.
2. NIS-Child Survey Data:
\rightarrow How many parents ever received WIC benefits for their children in a state.
\rightarrow How many infants have ever been breastfed exclusively in a state.
3. WIC Rebates data and USDA WIC Data:
\rightarrow Each auction's winner, the starting date and ending date of each contract.
4. Others:

* FRED St.Louis Data: Commodity Milk Price and CPI;
* US Census Bureau Data (State, county code)
* Nielsen Homescan Data
* State-county-year-quarter-manufacturer panel sample, from 2006 to 2016. (N: 193, 964)

Prices and Market Shares

		Price (\$)		Market Shares (\%)		Freq. (\%) of being WIC-supplier (5)
		Retail (1)	Rebates (2)	conditional (3)	unconditional (4)	
Abbott	Not contract supplier	$\begin{aligned} & 16.14 \\ & (1.986) \end{aligned}$		$\begin{gathered} 26.46 \\ (0.233) \end{gathered}$	$\begin{aligned} & 4.98 \\ & (0.063) \end{aligned}$	
	WIC-supplier	$\begin{aligned} & 15.70 \\ & (2.108) \end{aligned}$	$\begin{gathered} 3.61 \\ (0.395) \end{gathered}$	$\begin{gathered} 78.20 \\ (0.181) \\ \hline \end{gathered}$	$\begin{aligned} & 19.48 \\ & (0.083) \end{aligned}$	$\begin{gathered} 40.3 \\ (0.491) \end{gathered}$
Mead Johnson	Not contract supplier	$\begin{aligned} & 18.47 \\ & (3.494) \end{aligned}$		$\begin{gathered} 16.87 \\ (0.176) \end{gathered}$	$\begin{aligned} & 3.00 \\ & (0.042) \end{aligned}$	
	WIC-supplier	$\begin{aligned} & 16.83 \\ & (2.819) \\ & \hline \end{aligned}$	$\begin{gathered} 3.61 \\ (0.398) \\ \hline \end{gathered}$	$\begin{gathered} 66.97 \\ (0.253) \\ \hline \end{gathered}$	$\begin{aligned} & 18.83 \\ & (0.093) \\ & \hline \end{aligned}$	$\begin{gathered} 36.8 \\ (0.483) \\ \hline \end{gathered}$
Nestle	Not contract supplier	$\begin{aligned} & 15.50 \\ & (2.630) \end{aligned}$		$\begin{gathered} 9.72 \\ (0.117) \end{gathered}$	$\begin{aligned} & 1.36 \\ & (0.021) \end{aligned}$	
	WIC-supplier	$\begin{aligned} & 16.42 \\ & (2.165) \\ & \hline \end{aligned}$	$\begin{gathered} 3.60 \\ (0.397) \\ \hline \end{gathered}$	$\begin{gathered} 53.09 \\ (0.214) \\ \hline \end{gathered}$	$\begin{aligned} & 17.35 \\ & (0.065) \\ & \hline \end{aligned}$	$\begin{gathered} 22.9 \\ (0.420) \\ \hline \end{gathered}$
Others	Not contract supplier	$\begin{aligned} & 15.33 \\ & (2.834) \\ & \hline \end{aligned}$		$\begin{gathered} 6 \\ (0.075) \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & (0.020) \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ (0.000) \\ \hline \end{gathered}$
Breastfeeding					$\begin{aligned} & 75 \\ & (0.088) \\ & \hline \end{aligned}$	

Identification and Estimation

Demand Estimation I

Demand Parameters: $\theta=\left\{\alpha, \beta_{w}, \beta_{n w}\right\}$

* Price estimate (α)

$$
u_{i j m}=\alpha \cdot P_{i j m}+\beta_{i} \cdot \mathbb{1}_{j=g}+\eta_{c}+\eta_{y q}+\eta_{j}+\xi_{j m}+\epsilon_{i j m}
$$

- Instrument for the price of infant formula with milk, a significant input cost.
- Identification relies on the covariation between the instrument (milk) and market shares.

Demand Estimation II

Demand Parameters: $\theta=\left\{\alpha, \beta_{w}, \beta_{n w}\right\}$

* Heterogeneous preferences estimates $\left(\beta_{w}\right)$

$$
u_{i j m}=\alpha \cdot P_{i j m}+\beta_{i} \cdot \mathbb{1}_{j=g, m}+\eta_{c}+\eta_{y q}+\eta_{j}+\xi_{j m}+\epsilon_{i j m}
$$

- Distinguish β_{w} from $\beta_{n w}$, by relying on the corvariation in market share and WIC percentage when the contract manufacturer changes.
- $\hat{\beta}_{w}=f\left(\triangle\right.$ winner, $\left.\triangle M S^{\text {wic }}\right)$
- Similarly, $\hat{\beta}_{n w}=f\left(\triangle\right.$ winner, $\left.\triangle M S^{n o n-w i c}\right)$, which quantifies the potential spillover effect.

Demand Estimation II: Spillovers

Demand Estimation III

I estimate demand parameters using the standard BLP model with micro moments.

Unobserved Product Attributes:

* During the estimation, I denote $\beta_{n w}=\beta_{0}$ (non-WIC households), and $\beta_{w}=\beta_{0}+\beta_{1}$ (WIC households).
* Common part shared across consumers, $\delta_{j m}$

$$
\begin{equation*}
\delta_{j m}=\beta_{0} \times \mathbb{1}_{j=g}+\eta_{c}+\eta_{y q}+\eta_{j}+\xi_{j m} \tag{1}
\end{equation*}
$$

Inside-loop:

$$
\delta_{j m}^{t+1}=\delta_{j m}^{t}+\ln \left(s_{j m}\right)-\ln \left(s_{j m}^{\text {model }}\left(\hat{\alpha}, \hat{\beta}, \mathbf{p}_{m}, \mathbb{1}_{j=g}\right)\right)
$$

- Using $\left\{\delta_{j m}^{*}\right\}_{j=1 \ldots, J, m=1, \ldots, M}$, estimated $\hat{\beta}_{0}$, and fixed effects in equation (1) to back out $\hat{\xi}_{j m}$. GMM:

$$
\min _{\alpha, \beta_{1}} \vec{g}^{\prime}\left(\xi_{j m}, Z_{j m}, X_{j m}\right) \times W \times \vec{g}\left(\xi_{j m}, Z_{j m}, X_{j m}\right)
$$

Supply Estimation I

Non-contract Manufacturer:

$$
\pi_{j m}^{n o n-w i n n e r}\left(P_{j m}^{*}\right)=\max _{P_{j m}^{*}}\left(P_{j m}-M C_{j m}\right) \times \underbrace{Q_{j m}\left(P_{j m}\right)}_{s i z e_{m} \times s_{j m}}
$$

* Back out non-contract manufacturers' marginal costs by solving the profit-maximization problem.
$\hat{M} C_{j m}^{\text {non-winner }}$

$$
\frac{\overbrace{w_{i c} \times s_{j m}^{\text {wic }}+\left(1-w_{i c}\right) \times s_{j m}^{\text {non-wic }}}^{s_{j m}}}{\left.c \times\left(1-s_{j m}^{\text {wic }}\right)+\left(1-\text { wic }_{m}\right) \times s_{j m}^{\text {non-wic }} \times\left(1-s_{j m}^{\text {non-wic }}\right)\right)}
$$

* All variables on the right-hand-side are observed from the data.

Supply Estimation II

Contract Manufacturer:

$\pi_{j m}^{\text {winner }}(P_{j m}^{\text {reg }}, \hat{\left.M C_{j m}^{\text {winner }}\right)=\stackrel{\text { WIC HHs' demands as using vouchers }}{Q_{j m}^{\text {wic }}\left(P_{i j m}^{\text {wic }}\right)} \times \underbrace{\left(P_{j m}^{\text {reg }}-\text { Rebate }_{j m}\right)}_{\text {Each state's WIC agency pays }}+Q_{j m}^{\text {non-wic }}\left(P_{j m}^{\text {reg }}\right) \times P_{j m}^{\text {reg }}-Q_{j m}^{\text {all }}\left(P_{j m}\right) \times M C_{j m} .}$

* However, contract manufacturer is not choosing a price to maximize their profits in practice. Instead, its price is regulated by the WIC program.
* $P^{r e g}=P^{o b s}$

Method: I estimate contract manufacturer j's marginal costs from other markets that it loses the contract.

Results

Demand Results

Meaning	Parameters	Estimates
Price coefficient	α	-0.098
WIC households' preferences on contract manufacturers	β_{w}	1.420
Non-WIC households' preferences on contract manufacturers	$\beta_{n w}$	1.318
Price elasticity of demands for non-WIC	ϵ_{d}	-1.509

* The demand for the product is responsive to changes in price.
* WIC and non-WIC households have slightly different preferences for the WIC-supplemented infant formula products.

Supply Results

	Abbott		Mead Johnson		Nestle		Others Not contract supplier (7)
	Not contract supplier (1)	WIC supplier (2)	Not contract supplier (3)		Not contract supplier (5)	WIC supplier (6)	
(a) Cost							
Cost per bottle	$\begin{gathered} 5.203 \\ (2.145) \end{gathered}$	$\begin{aligned} & 5.595 \\ & (2.089) \end{aligned}$	$\begin{aligned} & 7.798 \\ & (3.607) \\ & \hline \end{aligned}$	$\begin{gathered} 7.091 \\ (3.176) \\ \hline \end{gathered}$	$\begin{gathered} 4.923 \\ (2.623) \\ \hline \end{gathered}$	$\begin{aligned} & 5.326 \\ & (1.763) \\ & \hline \end{aligned}$	$\begin{gathered} 4.802 \\ (2.761) \end{gathered}$
(b) Implied Margins and Markups margins $(p-c)$	$\begin{aligned} & 10.934 \\ & (0.977) \end{aligned}$	$\begin{aligned} & 10.109 \\ & (1.110) \end{aligned}$	$\begin{aligned} & 10.672 \\ & (1.148) \end{aligned}$	$\begin{gathered} 9.736 \\ (1.657) \end{gathered}$	$\begin{aligned} & 10.578 \\ & (0.815) \end{aligned}$	$\begin{aligned} & 11.094 \\ & (1.176) \end{aligned}$	$\begin{aligned} & 10.527 \\ & (0.700) \end{aligned}$
markup $\left(\frac{p-c}{p}\right)$	$\begin{gathered} 0.688 \\ (0.103) \\ \hline \end{gathered}$	$\begin{aligned} & 0.631 \\ & (3.273) \end{aligned}$	$\begin{aligned} & 0.599 \\ & (0.130) \end{aligned}$	$\begin{gathered} 0.571 \\ (3.224) \end{gathered}$	0.700 (0.119)	$\begin{aligned} & 0.682 \\ & (0.084) \end{aligned}$	0.709 (0.132)

* Estimated marginal costs range from $\$ 4.8$ to $\$ 7.8$ per 12 -ounce bottle of infant formula, which equates to approximately 65 cents per ounce. This result aligns with the estimate of 54 cents per ounce found in the existing literature, i.e. Simon (2023).

Counterfactual Simulations

Policy Experiments

Experiment I: Laissez-faire

* Description: No government \rightarrow The absence of subsidization/ price regulations/ exclusive contracts
* Motivation: Economists usually care about the total welfare when there is no government intervention.

Experiment II: Discount Coupon Policy

* Description: WIC participants can purchase whichever brands they want; but must pay a certain percentage of the unit price of infant formula products.
* Motivation: Explore a feasible alternative policy that could achieve the following goals:

1. No exclusive contracts, nor price regulations. reason
2. Allow WIC participants to choose whatever brands they prefer.
3. Keep the government expenditure being as low as the current world.

Policy Experiment I: Laissez-faire

* Decompose from the full policy to the lassize-faire; and evaluate the welfare by relaxing each policy setting:
\# 1. Exclusive selling right or extra preferences
\# 2. Subsidizing WIC
\# 3. Rebates
\# 4. Price restrictions
* To make sure all products being neutral after removing the competitive bidding contract, I re-compute equilibrium for the current policy.

	A. Subsidize	B. Price Restriction on the winner	C. Have rebates
Benchmark (Policy)	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	The winner pays rebates

	Price	Gov Spend	CS(wic)	CS(non-wic)	CS	profit	Total Welfare	CS(wic) and Gov
Benchmark	16.22	$\|-151.0\|$	203.5	78.9	282.4	220.7	352.2	52.5

Policy Experiment I: Laissez-faire

	A. Subsidize	B. Price Restriction on the winner	C. Have rebates
Benchmark (Policy)	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	The winner pays rebates
Case 2	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	No rebates

	Price	Gov Spend	CS(wic)	CS(non-wic)	CS	profit	Total Welfare	CS(wic) and Gov
Benchmark	16.22	$\|-151.0\|$	203.5	78.9	282.4	220.7	352.2	52.5
Case 2	16.22	$\|-196.1\| \uparrow$	203.5	78.9	282.4	$265.8 \uparrow$	352.2	$7.4 \downarrow$

$$
\pi_{j m}^{\text {winner }}=Q_{j m}^{\text {wic }}\left(P_{i j m}^{\text {wic }}\right) \times\left(P_{j m}^{o b s}-\text { Rebate } \widehat{j m}\right)+Q_{j m}^{\text {non-wic }}\left(P_{j m}^{o b s}\right) \times P_{j m}^{o b s}-Q_{j m}^{a l l}\left(P_{j m}\right) \times M C_{j m}
$$

* $\operatorname{Rebate}_{j m}\left(p_{j m}, \mathbf{p}_{-j, m}\right.$, Rebates $\left._{-j, m}\right)=$ Rebate $_{j, m}^{o b s}$. Here, rebates are independent with prices.
* Suppliers' profits increase due to the absence of additional costs, rebates, and meanwhile government's expenditure increase.

Policy Experiment I: Laissez-faire

	A. Subsidize	B. Price Restriction on the winner	C. Have rebates
Benchmark (Policy)	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	The winner pays rebates
Case 2	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	No rebates
Case 3	WIC HHs pay prices	The winner faces $P^{\text {reg }}$	No rebates

	Price	Gov Spend	CS(wic)	CS(non-wic)	CS	profit	Total Welfare	CS(wic) and Gov
Benchmark	16.22	-151.0	203.5	78.9	282.4	220.7	352.2	52.5
Case 2	16.22	$\|-196.1\|$	203.5	78.9	282.4	265.8	352.2	7.4
Case 3	16.23	$0 \downarrow$	$100.1 \downarrow$	78.9	$179.0 \downarrow$	$174.8 \downarrow$	$353.8 \uparrow$	$100.1 \uparrow$

* Now, WIC households respond to prices and opt out for the outside option, breastfeeding, which causes suppliers' revenues from WIC households to decline.

Policy Experiment I: Laissez-faire

	A. Subsidize	B. Price Restriction on the winner	C. Have rebates
Benchmark (Policy)	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	The winner pays rebates
Case 2	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	No rebates
Case 3	WIC HHs pay price	The winner faces $P^{\text {reg }}$	No rebates
Case 4 (Lassize Faire)	WIC HHs pay price	Bertrand Nash without $P^{\text {reg }}$	No rebates

	Price	Gov Spend	CS(wic)	CS(non-wic)	CS	profit	Total Welfare	CS(wic) and Gov
Benchmark	16.22	-151.0	203.5	78.9	282.4	220.7	352.2	52.5
Case 2	16.22	$\|-196.1\|$	203.5	78.9	282.4	265.8	352.2	7.4
Case 3	16.23	0	100.1	78.9	179.0	174.8	353.8	100.1
Case 4	$16.29 \uparrow$	0	$99.0 \downarrow$	$78.0 \downarrow$	$177.0 \downarrow$	$175.1 \uparrow$	$352.1 \downarrow$	$99.0 \downarrow$

* Removing the price regulation leads to a $0.4 \% \uparrow$ price, resulting in a $1.1 \% \downarrow$ in aggregate consumer surplus.

Policy Experiment I: Laissez-faire

	A. Subsidize	B. Price Restriction on the winner	C. Have rebates
Benchmark (Policy)	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	The winner pays rebates
Case 2	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	No rebates
Case 3	WIC HHs pay price	The winner faces $P^{\text {reg }}$	No rebates
Case 4 (Lassize Faire)	WIC HHs pay price	Bertrand Nash without $P^{\text {reg }}$	No rebates

	Price	Gov Spend	CS(wic)	CS(non-wic)	CS	profit	Total Welfare	CS(wic) and Gov
Benchmark	16.22	-151.0	203.5	78.9	282.4	220.7	352.2	52.5
Case 2	16.22	$\|-196.1\|$	203.5	78.9	282.4	265.8	352.2	7.4
Case 3	16.23	0	100.1	78.9	179.0	174.8	353.8	100.1
Case 4	$16.29 \uparrow$	0	$99.0 \downarrow$	$78.0 \downarrow$	$177.0 \downarrow$	$175.1 \uparrow$	$352.1 \downarrow$	$99.0 \downarrow$

* Removing the price regulation leads to a $0.4 \% \uparrow$ price, resulting in a $1.1 \% \downarrow$ in aggregate consumer surplus.
* Two opposite forces impact prices:
- Remove $P^{\text {reg }} \rightarrow$ The original contract manufacturer now has ability to $\uparrow P . \rightarrow P^{\text {mean }} \uparrow$
- Remove $P^{\text {reg }} \rightarrow$ If the original contract manufacturer $\uparrow P$, others respond to lower prices to compete $\rightarrow P^{\text {mean }} \downarrow$

Policy Experiment I: Laissez-faire

	A. Subsidize	B. Price Restriction on the winner	C. Have rebates
Benchmark (Policy)	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	The winner pays rebates
Case 2	WIC HHs pay 0	The winner faces $P^{\text {reg }}$	No rebates
Case 3	WIC HHs pay price	The winner faces $P^{\text {reg }}$	No rebates
Case 4 (Lassize Faire)	WIC HHs pay price	Bertrand Nash without $P^{\text {reg }}$	No rebates

	Price	Gov Spend	CS(wic)	CS(non-wic)	CS	profit	Total Welfare	CS(wic) and Gov
Benchmark	16.22	-151.0	203.5	78.9	282.4	220.7	352.2	52.5
Case 2	16.22	-196.1	203.5	78.9	282.4	265.8	352.2	7.4
Case 3	16.23	0	100.1	78.9	179.0	174.8	353.8	100.1
Case 4	16.29	0	99.0	78.0	177.0	175.1	352.1	99.0

* Every additional dollar spent by the government, WIC participants receive only 69 cents, and the left is captured by suppliers.

Policy Experiment I: Laissez-faire

* Decompose from the full policy to the Laissez-faire; and evaluate the welfare by relaxing each policy setting:
\# 1. Exclusive selling right or extra preferences
\# 2. Subsidizing WIC
\# 3. Rebates
\# 4. Price restrictions

Finding 1 Consumer surplus for WIC participants declined 50%.
\rightarrow This is because there is no subsidization to WIC participants in the Laissez-faire.

Finding 2 Removing the WIC program, in a Laissez-faire counterfactual, raises prices.
\rightarrow This is because price regulation forces the contract manufacturer to set a lower price which strengthens competition.

Policy Experiment II: Discount Policy

Definition: WIC participants can purchase whichever brands as they want; but must pay a certain percentage of the unit price of infant formula products.

* WIC Household i's utility from purchasing product j in the market m is given below:

$$
u_{i j m}^{\text {wic }}=\alpha P_{i j m} \times x \%+\eta_{c o u n t y}+\eta_{y q}+\eta_{j}+\xi_{j m}+\epsilon_{i j m}
$$

* Non-WIC Household i's utility from purchasing product j in the market m is given below:

$$
u_{i j m}^{n o n-w i c}=\alpha P_{i j m}+\eta_{c o u n t y}+\eta_{y q}+\eta_{j}+\xi_{j m}+\epsilon_{i j m}
$$

* There is no exclusive winner any longer. Manufacturer j's profit:

$$
\pi=Q_{j m}^{\text {wic }}\left(P_{j m} \times x \%\right) \times P_{j m}+Q_{j m}^{n o n-w i c}\left(P_{j m}\right) \times P_{j m}-Q_{j m}^{a l l}\left(P_{j m}\right) \times M C_{j m}
$$

Policy Experiment II: Consumers

\# 1. As WIC participants pay less, their CS goes up.
\# 2. However, as WIC participants pay less, their demand elasticity goes down, so manufacturers raise prices.
\# 3. Therefore, as WIC participants pay less, non-WIC participants pay more.
\# 4. Overall, cannot achieve higher combined WIC and non-WIC CS.

Policy Experiment II: Firms

$\%$ of Prices that WIC HHs pay

Policy Experiment II: Government

* Policymakers can achieve government spending neutrality by offering each participant $(1-36 \%)=64 \%$ discount on any brands.
* To make the the sum of WIC households' consumer surplus and government expenditures to be the same as in the status quo: Give each WIC participant ($1-58 \%$) $=42 \%$ discount for each unit of infant formula.

Policy Experiment II: Discount Policy

* WIC participants can purchase whichever brands as they want; but must pay a certain percentage of the unit price of infant formula products.

Finding 1 The aggregate consumer surplus in the counterfactual could never as high as it under the current WIC program.

Policy Experiment II: Discount Policy

* WIC participants can purchase whichever brands as they want; but must pay a certain percentage of the unit price of infant formula products.

Finding 1 The aggregate consumer surplus in the counterfactual could never as high as it under the current WIC program.
\rightarrow This is because: (i) If the discount is too low, then WIC participants have to pay more out-of-pocket, which reduce their surplus; (ii) If the discount is too high, then manufacturers have incentive to raise prices, which could harm non-WIC households.

Policy Experiment II: Discount Policy

* WIC participants can purchase whichever brands as they want; but must pay a certain percentage of the unit price of infant formula products.

Finding 1 The aggregate consumer surplus in the counterfactual could never as high as it under the current WIC program.
\rightarrow This is because: (i) If the discount is too low, then WIC participants have to pay more out-of-pocket, which reduce their surplus; (ii) If the discount is too high, then manufacturers have incentive to raise prices, which could harm non-WIC households.

Finding 2 Policymakers can achieve government spending neutrality by offering each participant 64% discount on any brands.

Policy Experiment II: Discount Policy

* WIC participants can purchase whichever brands as they want; but must pay a certain percentage of the unit price of infant formula products.

Finding 1 The aggregate consumer surplus in the counterfactual could never as high as it under the current WIC program.
\rightarrow This is because: (i) If the discount is too low, then WIC participants have to pay more out-of-pocket, which reduce their surplus; (ii) If the discount is too high, then manufacturers have incentive to raise prices, which could harm non-WIC households.

Finding 2 Policymakers can achieve government spending neutrality by offering each participant 64% discount on any brands.

Finding 3 To make the the sum of WIC households' consumer surplus and government expenditures to be the same as in the status quo: Give each WIC participant 42% discount.

Conclusion

Policy Implications

* The current WIC program
+ Pros: Bring higher consumer surplus for WIC participants than two alternative policy experiments.
- Cons: It is expensive.
\rightarrow Finding: Every additional dollar spent by the government, WIC participants receive only 69 cents.
* Counterfactual policies
+ Pros: Decreases the government expenditures, and increases the total welfare, compared with the current world.
- Cons: Could never reach the aggregate consumer surplus in the current world.

Thanks!

Questions or comments? lঞ্ঞ xwang975@uga.edu

WIC contract and Market Shares

[^0]
Demand Spillovers (2) ${ }^{2}$

[^1]

[^2]
Price Restrictions

Net price means the difference between an infant formula manufacturer's lowest national wholesale price per unit for a full truckload of infant formula and the rebate level or the discount offered or provided by the manufacturer under an infant formula cost containment contract.
(4) Vendor selection criteria: competitive price. The State agency must establish a vendor peer group system and distinct competitive price criteria and allowable reimbursement levels for each peer group. The State agency must use the competitive price criteria to evaluate the prices a vendor applicant charges for supplemental foods as compared to the prices charged by other vendor applicants and authorized vendors, and must authorize vendors selected from among those that offer the program the most competitive prices. The State agency must consider a vendor applicant's shelf prices or the prices it bids for supplemental foods, which may not exceed its shelf prices. In establishing competitive price criteria and allowable reimbursement levels, the State agency must consider participant access by geographic area. The State agency must inform all vendors of the criteria for peer groups, and must inform each individual vendor of its peer group assignment.

[^3]
Price Restrictions (5)

Policy Details:

* "Bid solicitations must require the manufacturer to adjust rebates for price changes subsequent to the bid opening. Price adjustments must reflect any increase and decrease, on a cent-to-cent basis, in the manufacturer's lowest national wholesale prices for a full truckload of infant formula." ${ }^{5}$

Example:

* Suppose Mead Johnson wins the competitive bidding contract in Georgia, by submitting the highest rebate, $\$ 5$. (determined)
* Assume the unit price of the infant formula of Mead Johnson now is $\$ 30$.
* WIC program only pays $30-5=\$ 25$
* If Mead Johnson wants to set a price $P=\$ 35$, it is forbidden by the WIC program's price regulation.

[^4]
Price Regulation

Non-contract Manufacturer:

$$
\pi_{j m}^{\text {non-winner }}\left(P_{j m}\right)=\left(P_{j m}-M C_{j m}\right) \times Q_{j m}\left(P_{j m}\right)
$$

Contract Manufacturer:

$$
\begin{gathered}
\text { WIC HHs' demand as using vouchers } \\
\pi_{j m}^{\text {winner }}\left(P_{j m}^{r e g}\right)=\stackrel{\rightharpoonup}{Q_{j m}^{\text {wic }}(\underbrace{P_{i j m}^{w i c}}_{=0}) \times \underbrace{\left(P_{j m}^{r e g}-\text { Rebate }_{j m}\right)}_{\text {Each state's WIC agency pays }}+Q_{j m}^{\text {non-wic }}\left(P_{j m}^{r e g}\right) \times P_{j m}^{r e g}-Q_{j m} \times M C_{j m}}
\end{gathered}
$$

* Rebate is determined through the competitive bidding process.

* Prevent the government grant a manufacturer market power \rightarrow No exclusive contract
* Price ceiling could cause the shortage problem \rightarrow No price regulation

Intuition for the Policy Experiment Result I 0

* Suppliers' aggregate profits decrease because:

$$
\text { Total Revenues }=P \times Q
$$

* The estimated elastic demand of prices implies that:

$$
\begin{aligned}
& \rightarrow\left|\epsilon^{d}\right|=\left|\frac{\% \triangle Q}{\% \Delta P}\right|>1 \\
& \rightarrow \underbrace{|\% \triangle Q|}_{\downarrow}>\underbrace{|\% \triangle P|}_{\uparrow}
\end{aligned}
$$

Expected Consumption Behaviors

The WIC Contract winner changes
ex: 2007.10.1

Expected Consumption Behaviors

The WIC Contract winner changes
ex: 2007.10.1

Are there any spillover effects?

- To disentangle the newborn's consumption from previous-babies' consumption, I look at 4 groups' consumption pattern:

1. WIC babies born before contract changed

* WIC babies should always choose bidding winner's products.

2. Non-WIC babies born before contract changed

* Unknown.

3. WIC babies born after contract changed

* WIC babies should choose new winner's products.

4. Non-WIC babies born after contract changed

* Unknown. If there is spillover, then they should choose new winner's products.

Summary Statistics for the WIC Rebate Data ${ }^{13}$

	Mean (\$)	SD	$\operatorname{Min}(\$)$	$\operatorname{Median}(\$)$	$\operatorname{Max}(\$)$
Rebate					
\quad Mead Johnson	5	4	0	3.2	15.7
Abbott	4.7	3.8	0	3.2	14.9
Gerber	3.1	4.2	0	1.1	14.9
Wholesale price					
Mead Johnson	6.5	4.6	1.3	4.1	15.8
Abbott	6.4	4.5	1.3	4.1	14.9
\quad Gerber	6.1	4.3	1.6	4.2	15.1
Note:		WIC Rebate Data: $1986-2016$			

	Frequency
Formula type	
Milk-based liquid concentrate	37.3%
Soy-based liquid concentrate	22.6%
Milk-based powder	16.3%
Soy-based powder	16.9%
Winner	
Mead Johnson	46.5%
Abbott	25.1%
Gerber	19.1%
Note:	WIC Rebate Data: 1986-2016

State: WIC contract winners

2014 Q3

manufacturer \square Abbott \square Mead Johnson \square Nestle

2010 Q3

2020 Q3

National: Market Shares and Unit Prices

Price Dispersion in the U.S. for all brands, 2006-2020

Price Dispersion in the U.S. for Top 3 brands

The impact of Winning WIC Contracts on Winner's Price

manufacturer
Gerber Mead Johnson

manufacturer
Gerber
Mead Johnson

manufacturer

Stylized Facts: Real Unit Price

Stylized Facts: Real Price Changes

Colluding in Auctions ${ }^{6}$

THE WALL SIREET JOURNAL.
World Business U.S. Politics Economy Tech Finance Opinion Arts\&Culture Lifestyle Real
Agency investigating whether formula manufacturers coordinated before bidding for state contracts

By Liz Essley Whyte Follow, Jesse Newman Follow and Kristina Peterson Follow Updated May 24, 2023 9:38 am ET
\Leftrightarrow Share $A A$ Resize $\quad{ }^{281}$

A nationwide baby-formula shortage has some desperate parents driving hours in search of supplies. Dr. Steven Abrams, a pediatrician at the University of Texas at Austin, explains what parents should and shouldn't do amid the crisis. Photo illustration: Laura Kammermann

The Federal Trade Commission is investigating whether baby-formula makers colluded on bids for lucrative state contracts.

[^5]
[^0]: ${ }^{1}$ Data sources: Nielsen Retail Scan Data, 2006-2020

[^1]: ${ }^{2}$ Data sources: Nielsen Home Scan Data, 2006-2020

[^2]: ${ }^{3}$ Data sources: Nielsen Retail Scan Data, 2006-2020

[^3]: ${ }^{4}$ Sources: 7 CFR Part 246: SNAP-WIC

[^4]: ${ }^{5}$ Source: Federal Regulation Code for WIC, title 7, subtitle B, Chapter II, subtitle A, Part 246.

[^5]: ${ }^{6}$ Sources: The Wall Street Journal, 2023

